anonymous
  • anonymous
lim x-->infinity (lnx)^(1/x)
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

JamesJ
  • JamesJ
Let f(x) = (ln x)^(1/x) What's the limit of ln(f(x)) ?
anonymous
  • anonymous
i didn't get your question..
JamesJ
  • JamesJ
I'm suggesting a strategy. Instead of trying to find the limit of the function directly, try and find the limit of the log of the function g(x) = ln( f(x) )

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TuringTest
  • TuringTest
James can you always do that, or only at times like l'hospital?
JamesJ
  • JamesJ
provided the limit of ln( f(x) ) exists, you can do it. That is just like l'Hopital's rule. You need the limit of the new expression to exist and then it can be used to write down the limit of the original

Looking for something else?

Not the answer you are looking for? Search for more explanations.