Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

x=sqrt(7+4sqrt3)+sqrt(7-4sqrt3)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
1 Attachment
You may see the equation here.
We have \[x=\sqrt{7+4\sqrt 3}+\sqrt{7-4\sqrt 3}\] Let's multiply and divide this by \(\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}\) we have \[x=\sqrt{7+4\sqrt 3}+\sqrt{7-4\sqrt 3} \times \frac{\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}}{\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}}\] We get \[x=\frac{{(\sqrt{7+4\sqrt 3})^2 }-(\sqrt{(7-4\sqrt 3})^2 }{\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}}\] we get \[x=\frac{7+4\sqrt 3-(7-4 \sqrt 3)}{\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}}\] so we get \[x=\frac{8\sqrt 3}{\sqrt{7+4\sqrt 3}-\sqrt{7-4\sqrt 3}}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Is this the answer?
Yeah can't be simplified more
How it be made?
Because the answer is 4.
Ai Se Eu Te Pego -
159
rrsrsrs
good
De onde vc é Elodi?
quoi
Vc falou português
i m from Brazil
okk
or u may send me your link profile
I got it, Let me show you how this 4
yes]
@viniterranova please don't share personal info like facebook id here. Delete it please
ok
Bye Elodi See u around i ve got go
y
We have \[x=\sqrt {7+4 \sqrt 3}+\sqrt {7-4 \sqrt 3}\] Let's square both the sides we get \[x^2=(\sqrt {7+4 \sqrt 3})^2+(\sqrt {7-4 \sqrt 3})^2+2\times (\sqrt {7+4 \sqrt 3})\times (\sqrt {7-4 \sqrt 3})\] we get \[x^2=7+4\sqrt 3+7-4\sqrt 3+2 \sqrt{(7^2-(4\sqrt 3)^2}\] we get \[x^2=14+2\times \sqrt {49-16\times 3}\] we get \[x^2=14+2\times \sqrt 1\] we get \[x^2=14+2=16\] so \[x=4\]
square on both sides|dw:1330781973743:dw|
Good.

Not the answer you are looking for?

Search for more explanations.

Ask your own question