ggrree
  • ggrree
I'm feeling a bit rusty with probabiliy. Could somebody quickly explain to me how to use permutations and combinations? I understand what they mean, but I'm confused at what the xPy or the xCy notation means( where x and y are numbers.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

ggrree
  • ggrree
I'm feeling a bit rusty with probabiliy. Could somebody quickly explain to me how to use permutations and combinations? I understand what they mean, but I'm confused at what the xPy or the xCy notation means( where x and y are numbers.
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[ \large xPy = ^xP_y = \frac{x!}{(x-y)!} \] \[ \large xCy = ^xC_y = \frac{x!}{y! \times (x-y)!} \] where \( x,y \in \mathbb{N} \)
anonymous
  • anonymous
xPy: It means that there are (x) objects going into (y) categories, order matters (ie) (x) different cars competing for (y) places in a race: xPy xCy: It means there are (x) objects going into (y) categories, but order DOES NOT matter: ie) (x) different cars competing for (y) identical parking spots
anonymous
  • anonymous
Just remember "Permutation" is counting the different ways something can "Permeate" so order matters. "Combination" is counting different ways to combine the same things so order does not matter.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
right ...switched this two
anonymous
  • anonymous
|dw:1330816685116:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.