bahrom7893
  • bahrom7893
For what values of r>0 does the series converge?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
I'm wary of using the integral test before actually getting some advices: |dw:1330831400158:dw|
.Sam.
  • .Sam.
yeah
bahrom7893
  • bahrom7893
.Sam. yeah what? Sorry to sound rude, but what's the point of disappointing me? I got so happy when I saw that notification pop up.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
@Mertsj can u take a look?
.Sam.
  • .Sam.
uh I got it from a calculator it says that its converge but I don't know how it solves, lol
bahrom7893
  • bahrom7893
@malevolence19 can u help?
.Sam.
  • .Sam.
sry for the disappointment :D
bahrom7893
  • bahrom7893
tnx for tryin sam
anonymous
  • anonymous
Okay, I think I can help you.
bahrom7893
  • bahrom7893
awesome
anonymous
  • anonymous
For convergence of a series using the ratio test we must have that: \[\lim_{n \rightarrow \infty}a_n \rightarrow 0\] And: \[\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n}\right|<1\] So: \[\lim_{n \rightarrow \infty} \left| \frac{r^{\ln(n+1)}}{r^{\ln(n)}}\right|=\lim_{n \rightarrow \infty} \left| r^{\ln(n+1)-\ln(n)}\right|=\lim_{n \rightarrow \infty} \left| r^{\ln \left( \frac{n+1}{n}\right)}\right| \rightarrow 1\] Means that the ratio test is inconclusive. We need to find another approach (I should have realized this wouldn't work, its a rational function :/)
bahrom7893
  • bahrom7893
@JamesJ help?!
JamesJ
  • JamesJ
mal19 almost had it. If |r| < 1, then the limit of the ratio a_{n+1}/a_n converges to zero.
bahrom7893
  • bahrom7893
oh so that's it?
bahrom7893
  • bahrom7893
It's that simple? dang it and i'm sitting here with improper integrals!
JamesJ
  • JamesJ
*correction: If |r| < 1, then the limit of the ratio a_{n+1}/a_n converges to a number less than 1. And then by that ratio test, the sum converges.
bahrom7893
  • bahrom7893
U guys rule!
JamesJ
  • JamesJ
namely, it converges to |r| itself.

Looking for something else?

Not the answer you are looking for? Search for more explanations.