anonymous
  • anonymous
Testing for convergence or divergence of an integral: Use the direct comparison test or limit comparison test to test the integral for convergence. integral (0 to 1) of dt/(t-sint) How do I know which test to use, and how should I proceed from there?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Rogue
  • Rogue
I wish I had my calculator on me :( Try comparing it to 1/t.
anonymous
  • anonymous
does it matter whether I compare it to 1/t versus 1/t^2 or 1/t^3, etc?
Rogue
  • Rogue
Yep, this diverges ;) 1/(t - sin t) > 1/t from t:[0,1] \[\int\limits_{0}^{1} \frac {dt}{t} = \left[ \ln t \right]_{0}^{1}\] That is divergent. Since 1/t (the smaller function) diverges, then 1/(t- sin t) (the bigger function) must diverge as well.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Rogue
  • Rogue
It doesn't matter for this case, but for other integrals, you might wanna choose carefully.
anonymous
  • anonymous
I see. thanks. Could I use LCT for this integral as well?

Looking for something else?

Not the answer you are looking for? Search for more explanations.