bahrom7893
  • bahrom7893
Let N be a positive integer. Show that if a_n=b_n for n >= N, then Sum(a_n) and Sum(b_n) either both converge, or both diverge.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
@satellite73 can u help, plz?
bahrom7893
  • bahrom7893
@imranmeah91 ?
anonymous
  • anonymous
what class is it?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
Cal 2
bahrom7893
  • bahrom7893
@Zarkon can u take a look at this too?
Zarkon
  • Zarkon
the sum up to N-1 is a finite sum so it doesn't contribute to the convergence or divergence of the series.
Zarkon
  • Zarkon
is assume \(\sum a_n\) converges then \[\sum_{k=1}^{\infty}b_n=\sum_{k=1}^{N-1}b_n+\sum_{k=N}^{\infty}b_n\] \[=\sum_{k=1}^{N-1}b_n+\sum_{k=N}^{\infty}a_n\] since \(\sum_{k=1}^{N-1}b_n\) is finite and \(\sum a_n\) converge...so does \(\sum b_n\)
bahrom7893
  • bahrom7893
tnx a lot man u're a lifesaver!
Zarkon
  • Zarkon
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.