bahrom7893
  • bahrom7893
Zarkon, another series question.. sorry, im blanking out right now.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

bahrom7893
  • bahrom7893
Zarkon, another series question.. sorry, im blanking out right now.
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

bahrom7893
  • bahrom7893
Show that if Sum(a_n) diverges, and k does not equal 0, then Sum(k*a_n) diverges
bahrom7893
  • bahrom7893
i mean this is common sense, constant*infinity = infinity..
Zarkon
  • Zarkon
diverges doesn't necessarily mean infinity.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
show the contrapositive if Sum(k*a_n) converges then Sum(a_n) converges.
Zarkon
  • Zarkon
Sum(k*a_n) converges so s=Sum(k*a_n) =ksum(a_n) k not zero then sum(a_n)=s/k
bahrom7893
  • bahrom7893
ty zarkon
Zarkon
  • Zarkon
np :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.