bahrom7893
  • bahrom7893
Zarkon last one!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Zarkon
  • Zarkon
I can already feel my brain shutting down ;)
bahrom7893
  • bahrom7893
mine shutdown like 3 hours ago
1 Attachment
bahrom7893
  • bahrom7893
Part A's easy

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
yes...i get 65/24
bahrom7893
  • bahrom7893
1+1+1/2+1/6+1/24
anonymous
  • anonymous
YAY :D
Zarkon
  • Zarkon
part b looks like induction
anonymous
  • anonymous
part b is definitely induction ... this property could be used to show that 2
Zarkon
  • Zarkon
for n=1 we have 1/1!=1 and 1/2^(1-1)=1/1=1 \(1\le 1\) so the basis step holds assume \[\frac{1}{k!}\le\frac{1}{2^{k-1}}\] is true for some \(k\) then \[\frac{1}{(k+1)!}=\frac{1}{k!}\frac{1}{k+1}\le\frac{1}{2^{k-1}}\frac{1}{k+1}\] since \(\frac{1}{2}\ge\frac{1}{n+1}\) for \(n\ge1\) we have \[\frac{1}{2^{k-1}}\frac{1}{k+1}\le\frac{1}{2^{k-1}}\frac{1}{2}=\frac{1}{2^{k}}\] QED
anonymous
  • anonymous
Prof Zarkon I need your inputs on another problem, i have pinged you from the relevant thread. Please do check it :)
anonymous
  • anonymous
btw for part c the upper bound is \( 3\).
bahrom7893
  • bahrom7893
ty guys, i can die a peaceful death now, knowing that 9.3 is finally done...
anonymous
  • anonymous
when (exactly) are you going to die? :P
bahrom7893
  • bahrom7893
not any time soon, hopefully.

Looking for something else?

Not the answer you are looking for? Search for more explanations.