anonymous
  • anonymous
diff eq..determine the form of a particular solution for the given nonhomogeneous equation y''+2y'=3-4t
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
yp = some educated guess yp=At + B ; if these are not already a linear solution to the homogenous part ...
anonymous
  • anonymous
for fundamental solution set, i have y1=1, y2=e^(-2t) f(t)=3-4t polynomial method so yp=-At+B...check to see if any matches the fund.set. it does so... yp=-At^2+Bt find y'p and y''p and plug in. now solving for A and B is where i'm stuck
amistre64
  • amistre64
then lets work thru it so I can catch up :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok thx
amistre64
  • amistre64
r^2+2r=0 r=0,-2 right?
anonymous
  • anonymous
at this point, it's just algebra which apparently, i'm very weak at
anonymous
  • anonymous
right
amistre64
  • amistre64
\[y=c_1e^{0x}+c_2e^{-2x}+y_p\] \[y=c_1+c_2e^{-2x}+y_p\]
amistre64
  • amistre64
yp = At + B ; but we already have a constant so we need to up the ante yp = At^2 + Bt ; and derive
amistre64
  • amistre64
yp = At^2 + Bt yp'= 2At + B yp''= 2A agreed?
amistre64
  • amistre64
yp''+2yp'=3-4t (2A) + 2(2At + B)=3-4t im going to do this in lowercase, just easier to type for me 2a +4at +2b = 3 -4t (4a)t = -4t ; a=-1 (2a+2b) = 3 -2+2b = 3 ; b=5/2
anonymous
  • anonymous
ah ok, i almost did that to solve for a but wasn't sure if it was correct, thank you
amistre64
  • amistre64
at^2 + bt = -t^2+ 5/2 t\[\] \[y=c_1+c_2e^{-2x}-t^2+\frac 52 t \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.