Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

My integral calculus is a little rusty. There was an exercise in the first lecture series where we calculated the average power by integrating the COS waveform over one cycle. I'm sorry I don't have the problem in front of me. Can anyone show me how this is done? I'm a little confused. For example: how do you integrate (cos(2*pi*60t))^2 over one cycle? I fill in more detail when I get home tonight if needed.

MIT 6.002 Circuits and Electronics, Spring 2007
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
let y=(cos(2*pi*60*t))^2 cos^2t=(1+cos2t)/2 hence y=(1+cos2(2*pi*60t))/2 refer my solving thus we obtain y=t/2+sin[240*pi*t]/(4|dw:1331380539415:dw|80*pi)
This can be done only knowing that the integral of 1 over 0 to 2*pi is 2*pi. We want to compute the value of cos^2(x) over one cycle. Note that cos^2(x) = 1 - sin^2(x), and as cos(x) and sin(x) are equal by a translation of pi radians, the integrals A of cos^2(x) and sin^2(x) over one cycle are equal. Thus 2*pi - A = A, and so A/(2*pi) = 1/2. \[\int\limits_{0}^{2\pi} {\cos}^2(x)\ dx = A = \int\limits_{0}^{2\pi} 1-{\sin}^2(x)\ dx = 2\pi-A\] \[2A = 2\pi\] \[\frac{A}{2\pi} = \frac{1}{2}\] More detail: Let the integral of cos^2(x) over one cycle be A; this is equal to sin^2(x) over one cycle as the cos(x) and sin(x) are the same curve (just shifted). Then A = integral(1-sin^(x)) = 2*pi-A because cos^2(x)+sin^2(x)=1.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question