Here's the question you clicked on:
greysmither
How do you solve 2sin^2 (theta) + cos(theta)=2?
try substituting (sin^x)^2=1-(cos^x)^2
\[2\sin^2\theta+\cos \theta=2\] We know that: \[\sin^2\theta = (1-\cos^2\theta)\] So we can substitute and get: \[2(1-\cos^2\theta)+\cos \theta = 2\]