anonymous
  • anonymous
math 12 geometric sequences. which term has the value of 7over1024 in the geometric sequence 28,14,7
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Mimi_x3
  • Mimi_x3
It's like before; find the common ratio first.. \[\large \frac{T_{2}}{T_{1}} = \frac{14}{28} = \frac{1}{2} \] \[\large \frac{T_{3}}{T_{2}} = \frac{7}{14}=\frac{1}{2} \] Then use the formula.. \[\large T_n = ar ^{n-1}\] where a is the first term of the sequence and r is the common ratio.. \[\large T_n = \frac{7}{1024} \] \[\large ar ^{n-1} = \frac{7}{1024} \]
anonymous
  • anonymous
yes I did that and i got 7 over 1024 = 28(1over2)to the power of n - 1
anonymous
  • anonymous
and i divided each sides by 28

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
and i used log method and I am not getting a right answer..
dumbcow
  • dumbcow
\[(n-1) \log(\frac{1}{2}) = \log(\frac{7}{1024*28})\] \[n-1 = 12\] n = 13
anonymous
  • anonymous
ohhhhh okay thanks!!! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.