ggrree
  • ggrree
The time constant of an RC circuit is tau = RC. At time t = 3 tau, the charge on the discharging capacitor in an RC circuit will have decreased to approximately what percentage of its initial value?
Physics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ash2326
  • ash2326
Charge of a discharging capacitor is given as \[\huge Q= Q_{0} e^{\frac{-t}{\tau}}\] Q0 is the initial charge on the capacitor \[\tau\ is\ the\ time\ constant= RC\] at t= 3\(\tau\) \[\huge Q= Q_{0} e^{\frac{-3 \tau}{\tau}}\] \[\huge Q= Q_{0} e^{-3}=0.049 Q_0\] Initial Charge was \(Q_0\) So Percentage Decrease= \[\frac{Q_0-0.049 Q_0}{Q_0} \times 100\] \[=\frac{Q_0(0.951)}{Q_0} \times 100=95.1 \%\]
anonymous
  • anonymous
Q=Qo*e^(t/(time constant)) put the value of each and get... Q=Qo*e^-3 Q=Qo/e^3 Q=0.049Qo decrease in charge=Qo-Q=0.951Qo hence percentage decrease=((decrease in charge)/Qo)*100=0.951*100=95.1%

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.