anonymous
  • anonymous
A 0.395-kg blue bead slides on a frictionless, curved wire, starting from rest at point in the figure below, where h = 1.50 m. At point , the blue bead collides elastically with a 0.625-kg green bead at rest. Find the maximum height the green bead rises as it moves up the wire.
Physics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
A 0.395-kg blue bead slides on a frictionless, curved wire, starting from rest at point in the figure below, where h = 1.50 m. At point , the blue bead collides elastically with a 0.625-kg green bead at rest. Find the maximum height the green bead rises as it moves up the wire.
Physics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Hi where fig?
anonymous
  • anonymous
@mswitten Here.no fig is present.post fig .
anonymous
  • anonymous
blue bead's final velocity is 0after collide? if there is afig we use from that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Sinbearciante
  • Sinbearciante
Theres no need for a figure if what you have written is all that the problem includes. Since this is on a frictionless surface and they collide elastically, it is a problem concerning the conservation of energy. So, U(initial)=U(final); m(1)gh(initial)=m(2)gh(final). Plug in your numbers and youll get it. (.948m)
anonymous
  • anonymous
you find green bead velocity from conversation of momentum between two time befor collide & after collide so use conservation of energy
anonymous
  • anonymous
what is the m1 height?
Sinbearciante
  • Sinbearciante
I use U(potential energy) for both b/c when it starts at rest it obviously has no kinetic energy and it is all potential. When the green bead is at its max height, its at rest (relatively) so its energy is also all in the form of potential energy (U).
anonymous
  • anonymous
you'r right but we ought be use two conservation of energy one's for finding velocity of green &2nd for finding h of green not using one relation
Sinbearciante
  • Sinbearciante
Cant understand what hosein is trying to saying, but my answer is right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.