anonymous
  • anonymous
m is the midpoint of AB . find the coordinates of the third point when A(2,7) AND M(1,6) whats b?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i know the answer is (0,5) but how do i do the work?
anonymous
  • anonymous
Mid point of two pts A(x1,y1) and B(x2,y2)=(x1+x2)/2and (y1+y2)/2
anonymous
  • anonymous
huh confuzed...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the coordinates of the mid point is the average of the coordinates of the points
Mertsj
  • Mertsj
\[\frac{x _{1}+x _{2}}{2}=1\] \[\frac{2+x _{2}}{2}=1\] \[2+x _{2}=2\] \[x _{2}=0\]
Mertsj
  • Mertsj
Repeat the process for the y coordinate of the midpoint.
mysesshou
  • mysesshou
sorry, got ahead of myself. A(2,7) and M(1,6) 2-1 = 1, so that means it is one unit over. A is at 2, M is at 1, so B is at 0 7-6=1, so this one is also one unit over, A is at 7, M is at 6, B is at 5. B(0,5)
Mertsj
  • Mertsj
\[\frac{y _{1}+y _{2}}{2}=6\] \[\frac{7+y _{2}}{2}=6\] \[7+y _{2}=12\] \[y _{2}=5\]
mysesshou
  • mysesshou
Mertsj's method is more proper. Especially for a more difficult problem when the answer is not given.
mysesshou
  • mysesshou
Mertsj's method is recommended for exams and HW.
anonymous
  • anonymous
thanks alott
Mertsj
  • Mertsj
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.