anonymous
  • anonymous
The perimeter of a rectangle is 54 cm. The area of the same rectangle is 176 cm². What are the dimensions of the rectangle
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Directrix
  • Directrix
Let L and W represent the length and width of the rectangle. Because the perimeter of the rectangle is 54 and opposite sides of a rectangle are congruent, then 2L + 2W = 54. Dividing by 2, L + W = 27. L = 27 - W. The area of a rectangle is the product of its length and width. L*W = 176. Substituting for L with L = 27 - W, L*W = 176 becomes (27 - W)*(W) = 176. Collecting all terms on one side of the equation gives W² - 27 W + 176 = 0. This factors as (W - 16)(W - 11) = 0. By the Zero Product Property, W - 16 = 0 or W - 11 = 0, giving W = 16 or W = 11. Back substituting for W = 16 in L = 27 - W, L = 27 - 16 = 11. Similar substitution for W = 11 gives L = 16. The dimensions of the rectangle are 11 and 16.

Looking for something else?

Not the answer you are looking for? Search for more explanations.