A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • 4 years ago

The image of (-2, 5) is (1, 1). What is the image of (3, 2) under the same translation? (0, -2) (3, -4) (6, -2) (7, 0)

  • This Question is Closed
  1. vishal_kothari
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 2

    Find the difference between A and A' to know the translation: If the x coordinate goes from -2 to 1 then it moves a total distance of +3 in the x direction. If the y coordinate goes from 5 to 1 then A moves a total distance of -4 in the y direction. So the translation is (+3,-4) Add the x coordinate of B to the x coordinate of translation: 3+3=6 in x direction Add the y coordinate of B to the y coordinate of translation: 2-4=-2 in y direction So under the same translation, B'(6,-2)..

  2. anonymous
    • 4 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Get the slope of the line, the line w.r.t (-2,5) is reflected. \(\text{Note.}\) The slope would be perpendicular to the slope of line joining (-2,5) and (1,1). Now that you have the slope (slope of (-2,5) and (1,1)) you can assume the image points for (3,2) as (x,y) and then equate it to the slope, which will give you an equation in two variables. For the second equation, get the equation of the line (the line w.r.t the points are being reflected) in terms of x and y, you already have the slope but you need a point. \(\text {Note.}\) The line must pass through ((x+3)/2,(y+2)/2). You will get two equations now, solve them to get x and y.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.