anonymous
  • anonymous
Use implicit differentiation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[x^2+y=x^3+y^3\]
anonymous
  • anonymous
\[2x+y'=3x^2+3y^2y'\] then algebra to solve for \[y'\]
anonymous
  • anonymous
ok im not sure why y goes to y prime rather than dy/dx this confuses me why does it sometimes go to dy/dx and others it goes to y^1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
they are synonyms \[x^2+f(x)=x^3+f^3(x)\]
.Sam.
  • .Sam.
y'=dy/dx
anonymous
  • anonymous
easier for me to write \[y'\] than it is to write \[\frac{dy}{dx}\]
.Sam.
  • .Sam.
both same
anonymous
  • anonymous
so there is literally no difference because my book uses both
anonymous
  • anonymous
no difference at all
anonymous
  • anonymous
haha ok, and when you divide yprime by yprime you get y prime?
anonymous
  • anonymous
like saying \[f(x)=x^2,f'(x)=2x\] or \[f(x)=x^2\] \[\frac{dy}{dx}=2x
anonymous
  • anonymous
can use prime notation or leibniz notation they mean the same thing (mostly)
anonymous
  • anonymous
well ok now I've got it down to y^1=3x^2-2x+3y^2(y^1) do i just divide all by y prime?

Looking for something else?

Not the answer you are looking for? Search for more explanations.