anonymous
  • anonymous
Prove that the given subset W is a subspace of V , or show why it is not a subspace of V . V = \[\mathbb{R}^\infty \] is the subset of vectors (x1, x2, x3, ....) for which x3 = x2+x1, x4=x3+x2, .. in general xn+2 + xn+1 + xn for all n\[\ge\] 1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
\[V=\mathbb R^{\infty}\]\[W=\left\{ \vec x_1,\vec x_2,\vec x_3,... \right\}:\vec x_{n+2}=\vec x_{n+1}+\vec x_n;n\ge1\]is \(W\) a subspace of \(V\) ?
TuringTest
  • TuringTest
I just wanted to make the question more clear...
TuringTest
  • TuringTest
don't you have a typo? xn+2 + xn+1 + xn ? should be xn+2 = xn+1 + xn right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes sorry that's what it should be!
anonymous
  • anonymous
but i'm still not too sure of the answer or how to go about finding it.

Looking for something else?

Not the answer you are looking for? Search for more explanations.