anonymous
  • anonymous
Just checkin my answer: Express the radical in simplest form: the square root of 1/ 11 A. square root of 11 B. square root of 11/11 C. 1/square root of 11
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I think it's B
IsTim
  • IsTim
B is wrong...
anonymous
  • anonymous
|dw:1332384722059:dw| this is what B looks like

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
\[\sqrt{1\over 11} =\sqrt{1\over 11} \times \sqrt{\frac{{11}} {11}} \]\[= \frac {\sqrt{11}}{11}\] \[B.\]
anonymous
  • anonymous
I think you're right
anonymous
  • anonymous
Yea i think i'm right too...Istim is wrong
UnkleRhaukus
  • UnkleRhaukus
\[B. =C.\] i think C. is a simpler
anonymous
  • anonymous
@UnkleRhaukus It's usually improper to have a radical in the denominator though. sqrt(1/11) = sqrt(1)/sqrt(11) = 1/sqrt(11) Multiply by sqrt(11)/sqrt(11) which is the same as 1. sqrt(11)/[ sqrt(11) * sqrt(11) ] Squareroots cancel out. sqrt(11)/11 Answer is B.
UnkleRhaukus
  • UnkleRhaukus
well yeah
UnkleRhaukus
  • UnkleRhaukus
\[=11^{-1/2}\] looks even simpeler to me

Looking for something else?

Not the answer you are looking for? Search for more explanations.