anonymous
  • anonymous
LIMITS
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\lim_{x \rightarrow 0} (3^{x} -4^{x})/\sqrt{x}\]
Zarkon
  • Zarkon
L'Hospitals rule
anonymous
  • anonymous
its not working please see!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
why is it not working?
anonymous
  • anonymous
check my work??? \[\lim_{x \rightarrow 0} (x \log3 - xlog2)/(0.5\sqrt{x}) \] now if we again apply it will be 0/0 form
Zarkon
  • Zarkon
the derivative of \(\sqrt{x}\) is \(\displaystyle\frac{1}{2\sqrt{x}}\)
anonymous
  • anonymous
thats what i meant...
anonymous
  • anonymous
yess now what to do???
Zarkon
  • Zarkon
dividing by a fraction...invert and multiply
Zarkon
  • Zarkon
wow...more than one error here..
Zarkon
  • Zarkon
\[\frac{d}{dx}a^x=a^x\ln(a)\]
anonymous
  • anonymous
ohhh yah now get it thanks!!1
Zarkon
  • Zarkon
\[\lim_{x \rightarrow 0} (3^x \log(3) - 4^x\log(4))2\sqrt{x}\]
Zarkon
  • Zarkon
=0
anonymous
  • anonymous
thanks!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.