anonymous
  • anonymous
What is the equation of the ellipse with foci at (5, 0), (-5, 0) and vertices (9, 0), (-9, 0)? Can you help explain it to me as well? :S
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Okay, do you know about the general equations of an ellipse?
Mertsj
  • Mertsj
The vertices are on the x axis so the major axis is horizontal and a = 9. The focal points are (c,0) and (-c,0)
anonymous
  • anonymous
yes .

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
So c = 5. We know that a^2-b^2=c^2 or 81-b^x=25
Mertsj
  • Mertsj
So b^2=56 and b=2sqrt14
Mertsj
  • Mertsj
\[\frac{x^2}{81}+\frac{y^2}{56}=1\]
anonymous
  • anonymous
Thanks I understand it better :) What is the equation of the ellipse with foci (0, 4), (0, -4) and vertices (0, 8), (0, -8)? so for this one it would be x^2/16 + y^2/64?
anonymous
  • anonymous
x^2/16 + y^2/64 = 1
Mertsj
  • Mertsj
I got 48 for b^2. How did you get 16?
Mertsj
  • Mertsj
a=8, c=4 a^2-b^2=c^2 8^2-b^2=4^2
Mertsj
  • Mertsj
Solve that for b^2
anonymous
  • anonymous
64 - b^2 = 16
Mertsj
  • Mertsj
yes. Finish it
anonymous
  • anonymous
it would be 48.
Mertsj
  • Mertsj
yes.
anonymous
  • anonymous
so the answer is x^2/48 + y^2/16?
Mertsj
  • Mertsj
And: \[\frac{x^2}{48}+\frac{y^2}{64}=1\]
anonymous
  • anonymous
I have one last one..can you check if its correct or not?
Mertsj
  • Mertsj
yes
anonymous
  • anonymous
What is the equation of the ellipse with co-vertices (-20, 0), (20, 0) and foci (0, -8), (0, 8)? -20^2 + b^2 = 0 ?
Mertsj
  • Mertsj
Co-vertices are (-20,0) and (20,0) so that means that b = 20 Focal points are (0,8) and (0,-8) so that means that c = 8
Mertsj
  • Mertsj
a^2-20^2=8^2
anonymous
  • anonymous
oh ok
anonymous
  • anonymous
a^2 - 400 = 64
Mertsj
  • Mertsj
yes
anonymous
  • anonymous
so the answer is x^2/400 + y^2/64 = 1?
Mertsj
  • Mertsj
\[\frac{x^2}{400}+\frac{y^2}{464}=1\]
Mertsj
  • Mertsj
a^2=464
anonymous
  • anonymous
Oh okay i get it.
Mertsj
  • Mertsj
Good for you.
anonymous
  • anonymous
Thanks for everything :)
Mertsj
  • Mertsj
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.