anonymous
  • anonymous
derivative of y= (1/(e^(3x) +x^2))
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
y=(e^(3x) +x^2)^(-1) y'=-(e^(3x)+x^2)^(-2)*[3e^(3x)+2x]
anonymous
  • anonymous
could you help with f(z)=1/(e^z+1)^2
anonymous
  • anonymous
and show steps?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[f(z)=\frac{1}{(e^z+1)^2}\]?
anonymous
  • anonymous
you need chain rule for this. maybe easiest to rewrite in exponential notation as \[f(z)=(e^z+1)^{-2}\]
anonymous
  • anonymous
then \[f'(z)=-2(e^z+1)^{-3}\times e^z\] by the chian rule
anonymous
  • anonymous
clean up as \[f'(z)=\frac{-2e^z}{(e^z+1)^3}\]
anonymous
  • anonymous
thanks!
anonymous
  • anonymous
could you help me with more of an application type?
anonymous
  • anonymous
http://www.wiley.com/college/sc/hugheshallett/chap3.pdf Page 131 number 52 and 54

Looking for something else?

Not the answer you are looking for? Search for more explanations.