anonymous
  • anonymous
A certain particle has a lifetime of 1x10^-7s when measured at rest. How far does it go before decaying, its speed is 0.99c when it is created?
MIT 8.01 Physics I Classical Mechanics, Fall 1999
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Vincent-Lyon.Fr
  • Vincent-Lyon.Fr
If Δτ is the lifetime of the particle in its own frame of reference, then according to Einstein's special relativity, the elapsed time from our point of view will be greater (time dilation effect). The time measured in our reference frame will be: \[\Delta{t} = \frac{1}{\sqrt{1 - (v^2/c^2)}}\;\Delta\tau \geqslant \Delta\tau\] For v=0.99c, Δt=7.1Δτ, hence a flight-time of \[7.1\times10^{-7} s\] and a distance travelled of 210 m.

Looking for something else?

Not the answer you are looking for? Search for more explanations.