anonymous
  • anonymous
answer the challenge...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
answered
amistre64
  • amistre64
this really isnt a chatbox; try to keep the conversation on a problem limited to the scope of the original post
anonymous
  • anonymous
\[4\int\limits_{0}^{1}\int\limits_{0}^{\sqrt{1-x ^{2}}}\int\limits_{x ^{2}+2y}^{2-x}dz dy dx prove your answer\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
now i have to go find the other one to see if ishaan did good on it
anonymous
  • anonymous
ಠ_ಠ
across
  • across
What is so tough about this mechanical problem?
amistre64
  • amistre64
coding it in latex apparently lol
anonymous
  • anonymous
this problem needs understanding ... 2 yellow paper can answer it ...
amistre64
  • amistre64
all i have is white paper ....
across
  • across
It requires understanding? Are you kidding me? lol
anonymous
  • anonymous
not lol im not joking
anonymous
  • anonymous
hint is using triple integration... i know it is easy .... but it is a long process... it can be a challnge for you
across
  • across
\[\frac{1}{4}(7\pi-16)?\]
across
  • across
Prove that \(\mathbb{Z}\) is isomorphic to the multiplicative group of rational numbers of the form \(2^m\), where \(m\in\mathbb{Z}\).
amistre64
  • amistre64
just becasue a process is long doesnt mean that is challanging.
amistre64
  • amistre64
\[4\int\limits_{0}^{1}\left(\int\limits_{0}^{\sqrt{1-x ^{2}}}\left(\int\limits_{x ^{2}+2y}^{2-x}dz\right) dy\right) dx\] \[4\int\limits_{0}^{1}\left(\int\limits_{0}^{\sqrt{1-x ^{2}}}2-x-x^2-2y\ dy\right) dx\] \[4\int\limits_{0}^{1}2\sqrt{1-x ^{2}}-x\sqrt{1-x ^{2}}-x^2\sqrt{1-x ^{2}}-{1-x ^{2}}\ dx\] \[4\int\limits_{0}^{1}\sqrt{1-x ^{2}}(2-x-x^2)-{1-x ^{2}}\ dx\] etc
amistre64
  • amistre64
\[4\int\limits_{0}^{1}\sqrt{1-x ^{2}}(2-x-x^2)-{1-x ^{2}}\ dx\] \[4\int\limits_{0}^{1}\sqrt{1-x ^{2}}(2-x-x^2)\ dx+4(-{x-\frac{1}{3}x ^{3}}) \] \[4\int\limits_{0}^{1}\sqrt{1-x ^{2}}(2-x-x^2)\ dx-\frac{16}{3} \] and then int by parts whats left

Looking for something else?

Not the answer you are looking for? Search for more explanations.