anonymous
  • anonymous
Describe the function's level curves: f(x,y)=ln(x^2+y^2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
i don't see a curve ... it's a fucntion of x and y, if f=z, you get a surface
anonymous
  • anonymous
The set of points in the plane where a function f(x,y) has a constant value f(x,y)=c is called a level curve of f. So yes there are level curves
experimentX
  • experimentX
then i guess so, however then it's a equation of circle

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
how so, doesent the ln function contribute anythings
experimentX
  • experimentX
with center 0,0 and radius C if the constant is lnC
anonymous
  • anonymous
man, im just not geting it. How is it a circle
experimentX
  • experimentX
f(x,y)=ln(x^2+y^2) = K = some ln(C) or x^2+y^2 = C which is circle, oops radius sqrt(c)

Looking for something else?

Not the answer you are looking for? Search for more explanations.