anonymous
  • anonymous
The line x+2y=9 intersects the curve xy +18=0 at the points A and B. Find the coordinates of A and B.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
Simultaneous
.Sam.
  • .Sam.
|dw:1332666081213:dw| you can see both equations intercept each other, this means they will have the same x and y values, so x+2y=9 x=9-2y and xy +18=0 x=-18/y Then, equate both together 9-2y=-18/y Then solve
anonymous
  • anonymous
What about xy=-18 x=-18/y and then plug in -18/y +2y=9 and then you get -18 +2y^2 over y =9 2y^2-9y -18?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
9-2y=-(18)/(y) -2y=-(9(y+2))/(y) Since y is on the right-hand side of the equation, switch the sides so it is on the left-hand side of the equation. -(9(y+2))/(y)=-2y Find the LCD (least common denominator) of -(9(y+2))/(y)-2y. Least common denominator: y Multiply each term in the equation by y in order to remove all the denominators from the equation. -9y-18=-2y^(2) 2y^(2)-9y-18=0 (2y+3)(y-6)=0 y=-(3)/(2) , 6 Then solve for x
anonymous
  • anonymous
Ok, good. I got that :)
.Sam.
  • .Sam.
ok

Looking for something else?

Not the answer you are looking for? Search for more explanations.