anonymous
  • anonymous
How can I resolve this equation by substitution? \[\int\limits{(x^2)/1-x^3}dx\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
let u = (1-x^3)
experimentX
  • experimentX
let x^3 = y, then 3x^2 = dy
bahrom7893
  • bahrom7893
No let u = 1-x^3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

bahrom7893
  • bahrom7893
du=-3x^2dx
bahrom7893
  • bahrom7893
Multiply your integral by: (-1/3)*(-3)
experimentX
  • experimentX
1/3*int 1/(1-y)*dy
bahrom7893
  • bahrom7893
So you'll end up with: (-1/3)Integral((1/u)du)
bahrom7893
  • bahrom7893
my method is easier experimentX
experimentX
  • experimentX
yeah ... faster too
anonymous
  • anonymous
both is nice, thank you...
bahrom7893
  • bahrom7893
(-1/3)Ln|u|+C=(-1/3)Ln|1-x^3|+C
anonymous
  • anonymous
Thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.