anonymous
  • anonymous
use implicit differentiation to find the slope of the tangent line to the curve 3^x + log_2(xy) = 10 at the point (2,1) and use it to find the equation of the tangent line in the form y = mx + b
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

experimentX
  • experimentX
differentiate it and get the differential equation 3^x*ln(3) + 1/(xy)*{1+xdy/dx} = 0 find value of dy/dx which is .. roughly -21 http://www.wolframalpha.com/input/?i=3%5E2*ln%283%29+%2B+1%2F2%281%2Bx%29+%3D+0 which is the slope of the tangent, since you know slope m, and you have point (2,1) find the value of b, you have your tangent
experimentX
  • experimentX
oops sorry, slope is around -1.05 http://www.wolframalpha.com/input/?i=3%5E2*ln%283%29+%2B+1%2F%282%281%2Bx%29%29+%3D+0
experimentX
  • experimentX
is that log base 2??

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes it is.
anonymous
  • anonymous
I got this: \[(\ln 3)3^x+\frac{1}{(\ln 2)xy}\left(x\frac{dy}{dx}+y\right)=0\]
anonymous
  • anonymous
you can solve for \[\frac{dy}{dx}\] and substitute the coordinates given. so you'll have the slope.

Looking for something else?

Not the answer you are looking for? Search for more explanations.