anonymous
  • anonymous
Solve for x to five decimal places if 5^(2x-1)=357 Substitute your x value answer back into original and show that it will make each side equal.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
that the base e log if both sides \[\ln(5^{2x -1} = (2x -1)\ln(5)\] using this fact then \[(2x -1)\ln(5) = \ln (357)\] \[(2x -1) = \ln(357)/\ln(5)\] the right hand side is a number then \[2x = 1+\ln(357)/\ln(5)\] that should make it easy for you to find the value of x
ash2326
  • ash2326
We have \[5^{(2x-1)}=357\] Take log on both sides, we get \[\log_{10}(5^{(2x-1)})=\log_{10}(357)\] We know that \[\log_a b^c=c\times \log_a b\] so using this property here. We get \[(2x-1) \log_{10} 5= \log_{10} 357\] We can use either log tables or a calculator to find the values of \(\log_{10} 5,\log_{10} 357\) \[\log_{10} 5=0.6989\] and \[\log_{10} 357=2.55266\] so we have \[(2x-1) \times 0.6989=2.55266\] we get \[x=2.32602\]
anonymous
  • anonymous
alll the above methods are correct, but if you do more than two or three of these you should remember the change of base formula which tells you how to solve for a variable that is in the exponent: \[b^x=A\implies x=\frac{\ln(A)}{\ln(b)}\] in english, "the log of the total divided by the log of the base"

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so if you see another similar problem to \[5^{2x-1}=357\] go right to \[2x-1=\frac{\ln(357)}{\ln(5)}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.