anonymous
  • anonymous
integrate: dx/(1+2x)^(2/3) upper bound = 13 lower bound = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
slaaibak
  • slaaibak
\[\int\limits_{0}^{13} {dx \over (1+2x)^{2 \over 3}} \] This?
anonymous
  • anonymous
yes
apoorvk
  • apoorvk
the standard formula for any division of the above type is (indefinite): |dw:1332705707786:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

apoorvk
  • apoorvk
apply and solve. then put limits!!!
slaaibak
  • slaaibak
That's wrong apoorvk. You forgot to divide with the a in the numerator.
anonymous
  • anonymous
im trying to solve it by putting it in terms of u
anonymous
  • anonymous
substitution
slaaibak
  • slaaibak
Set (1+2x) = u 2dx = du dx = dx/2
slaaibak
  • slaaibak
I meant dx = du/2
anonymous
  • anonymous
yes and then you have \[\int\limits_{1}^{27}u^(3/2)*du/2\]
slaaibak
  • slaaibak
nope. it would be u^-2/3
apoorvk
  • apoorvk
not again... thanks @slaaibak and sorry @imal check out the correction.
anonymous
  • anonymous
never mind
anonymous
  • anonymous
\[\int\limits_{1}^{27}u^(-2/3)du/2\] what next? integrate?
nenadmatematika
  • nenadmatematika
|dw:1332708894281:dw|
nenadmatematika
  • nenadmatematika
that is the first step, and now pluging this you get:|dw:1332709062889:dw|
anonymous
  • anonymous
thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.