anonymous
  • anonymous
Determine whether the series converges or diverges: {sum from n=1 to infinity} n/2n^3+1 I used the comparison test with 1/n and got that the series I am looking at is convergent, but I am not sure if this is correct . . .
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nenadmatematika
  • nenadmatematika
|dw:1332709474986:dw|
nenadmatematika
  • nenadmatematika
I hope you understand...
anonymous
  • anonymous
[n/2n^3+1] < 1/n^2 since the second converges, so does the first

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Awesome! Thanks! :) Is the second series I choose always completely arbitrary, or are there better choices than others depending on the problem?
anonymous
  • anonymous
normaly the comparasion is done with geometric series, constant series, harmonic series with differnet exponents. It depends on the problem you doing.

Looking for something else?

Not the answer you are looking for? Search for more explanations.