anonymous
  • anonymous
I'm working through an example and I get stuck here: 1/(x+sqrt{x^2 +1}) (1 + (2x /(2sqrt{x^2 +1})) it ends as 1/(sqrt{x^2 +1}) I don't know how to manipulate the second part of the first expression. Thanks for your insight.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
phi
  • phi
A little hard to read: \[\frac{1}{x+\sqrt{x^2+1}}\left( 1+\frac{2x}{2\sqrt{x^2+1}} \right)\] cancel the 2's for the first fraction, multiply top and bottom by x-sqrt(x^2+1) this makes the denominator x^2 - (x^2+1) = 1 put the 1 in the 2nd term over a common denominator and add. if you multiply through the top simplifies to 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.