anonymous
  • anonymous
How do you rewrite the linear programming problem as a maximization problem with constraints involving inequalities of the forms <= a constant (with the exception of the inequalities x>=0, y>=0, and z>=0). Minimize C=2x-3y subject to 3x+5y>=20, 3x+y<=16 -2x+y<=1 x>=0,y>=0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Multiply the minimization function by -1. This makes it so that the function is sort of all reversed, so that maximum points now become minimum points and minimum points become maximum points. The constraints determine the domain from which the points can be chosen from. These numbers remain the same, so you do nothing to change the constraints. So now you want to minimize C = -2x + 3y subject to the same constraints as before. This will be the maximum point of 2x - 3y.

Looking for something else?

Not the answer you are looking for? Search for more explanations.