anonymous
  • anonymous
Given | 2 | |2| |p | a = |-2 | , b=|6| , c=|p | | 1 | |3| |p+1| find (i)the angle btween the directions of a and b) (ii) the value of p for which b and c are perpendicular
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@satellite73 and @.Sam.
.Sam.
  • .Sam.
|dw:1332849802804:dw|
anonymous
  • anonymous
thank you :) How about the second one?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I'm going for a bit, but if you could help, that'd be great!! :D... Also with the quesiton above this... Thank you soo much!
phi
  • phi
The dot product of two vectors is \[b \cdot c= |b| |c| \cos\theta\] If two vectors are perpendicular to each other, they form an angle of 90º cos(90º)= 0 so solve for \( b \cdot c= 0 \) using the other definition of dot product: \[b \cdot c = b_1\cdot c_1+ b_2\cdot c_2+ b_3\cdot c_3\]
anonymous
  • anonymous
I don't fully understand...
anonymous
  • anonymous
Would it be 2 times p + 6 times p + 3 times(p+1) =0?
anonymous
  • anonymous
@phi
anonymous
  • anonymous
@satellite73
anonymous
  • anonymous
yes it would
anonymous
  • anonymous
thanks. Oh, satellite, can you check the curve question I placed up?

Looking for something else?

Not the answer you are looking for? Search for more explanations.