anonymous
  • anonymous
the material for the bottom of a rectangular box costs 3 times as much per square foot as the material for the side and top. find the greatest capacity such a box can have if the total money available for material is $12 and the material for the bottom costs $0.60 per square foot.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
if we assume x=width, y=length, z=height;is it correct to form the constraint as \[g(x,y,z)=(2xz+2yz+xy)0.2 + xy(0.6)-12?\]
anonymous
  • anonymous
that looks good to me, but how do you maximize xyz?
anonymous
  • anonymous
owh k. just wanted to check on the constraint before proceeding. i'll let \[f(x,y,z)=xyz\]then \[\nabla f=\lambda \nabla g\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.