anonymous
  • anonymous
How can a set of vectors that do not lie in a common plane span R^3, whereas a set of vectors that lie on a common plane do not span R^3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
does it just have to do with the vectors that are in the set, and wheteher they can express a vectror in R^3 as a linear combination?
phi
  • phi
if all the vectors line in the same plane, then you can only get to points on the plane (all linear combinations are still on the plane) to get to a point off the plane you need a vector that points up or down i.e. not in the plane
phi
  • phi
so if you have a set of vectors in a plane they span R^2 and one more vector not in the plane allows you to span R^3 (you can get to any point in R^3 if you scale your vectors the right way.)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
okay, i am starting to see how its. So if all three vectors lie in the same plane, then we can only get two points by way of linear combination, but R^3 has vectors of the form (v1,v2,v3), so then that set would not span R^3
phi
  • phi
Your vectors in the plane could be 3-components (in R^3) , but that does not allow you to get to all points in R^3 if the vectors all lie in the same plane.
phi
  • phi
The easiest way to see this is imagine vectors of the form (x,y,0) no matter how you combine them, you will never get a z value other than 0. You need a vector with a z ≠ 0 to get to all the points above or below the plane
anonymous
  • anonymous
Right, so if all three vectors lie on that common plane,then we would only be taking into account the points in that specific plane (in which the three vectors lie). Wheareas if we have a set thaat has vectors that do not lie in the commone plane that allows us to get all the points in R^3
anonymous
  • anonymous
meaing we can write any vector in R^3 as a linear combination of the vecorts in S(that do not lie on a common plane)
phi
  • phi
yes
anonymous
  • anonymous
I'm not trained in the lingo, but am imagining a sheet of glass (the plane) with the vectors on. They're not going to span R^3 without, as phi says, going up or down.
anonymous
  • anonymous
good example, thanks you phi, and mcnalljj
phi
  • phi
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.