anonymous
  • anonymous
Find the vertex of the parabola formed by the following quadratic function: y = 2x2 – 8x + 2 a. (-4, 66) b. (4, 2) c. (-2, 26) d. (2, -6)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
(2,-6)
anonymous
  • anonymous
when you get the equation in std form, the x-coordinate of the vertex can be found by the following formula \[x=\frac{-b}{2a}\]where your quadratic is\[y=ax^2+bx+c\]
anonymous
  • anonymous
Oh ,, okay thanks , so thats the formual i have ta use when finding the vertex ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
It just gives you the x-coordinate of the vertex. To get the y-coordinate, plug the value of x you got back into the equation of the parabola. You only use this formula when the equation is given in the y=ax^2+bx+c form.
anonymous
  • anonymous
Find the vertex of the parabola formed by the following quadratic function: y = 7x2 + 21x – 1 Question 3 answers a. (-2, -15) b. (2, 69) c. (1, 27) d. (-3/2, -67/4)
anonymous
  • anonymous
ok, your turn
anonymous
  • anonymous
Vertex of y=ax^2+bx+c is \( \large \left(\frac{-b}{2a}, \frac{-b^2+4ac}{4a} \right)\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.