Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Prove that if an integer is a perfect square and a perfect cube, simultaneously, then it is either of the form 7k or 7k+1 (The problem belongs to the chapter, division algorithm)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@Ishaan94 can you help?
Standard number theory problem. This should help : http://www.math.wisc.edu/~jensen/567/hwk1.pdf

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If an integer is both a square and a cube, it can be of the form: \[(a ^{3})^{2}\] Now, since a cube can be of the form 7k or 7k+-1(thanks to FoolForMath), we write \[a ^{3}=7k\] and get the no to be 49k^2, which is in the form of 7 times something \[49k ^{2}=7\times(7k ^{2})\] Now put \[a ^{3}=7k+-1\] Square it and you'll get a number in the form of (7times something +1) Do you want me to show the steps that I skipped?
Luis Rivera and I are the only people here who have usernames with a space. So, we can't be pinged :(
@FoolForMath can you provide me a similarn pdf containing problem and solution set for topics related to divisibility, prime numbers, and Greatest Common divisor?
I didn't get this line "If an integer is both a square and a cube, it can be of the form: (a^3)^2" written by @Mani Jha
Consider 64. It is the cube of 4 and square of 8. It can be written as: 8^2=(2^3)^2 I've assumed that this is valid for all numbers which are powers of 6(64=2^6) or of multiples of 6. \[a ^{6}=(a ^{3})^{2}\] Any other power like a^2 a^3 a^4 can't be both a square and cube of some integer. Clear?

Not the answer you are looking for?

Search for more explanations.

Ask your own question