anonymous
  • anonymous
Simplify the expression. √-49/(3+4i)-(2-5i). The i is the imaginary #.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
take 7 out and it becomes 7i, and multiply the denominator by it's conjugate 3-4i .. and also on numerator .. and simpify it
anonymous
  • anonymous
There's a minus sign between the two complex terms. So it seems to me that you want to simplify the denominator first before multiplying by a conjugate. This is how I would do it. \[\sqrt{-49}/(3+4i)-(2-5i)\]\[7i/(3-2)+(5i+4i)\]\[7i/1+9i\] multiply by the conjugate (1-9i)\[7i(1-9i)/(1+9i)(1-9i)\]\[63+7i/82\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.