anonymous
  • anonymous
Tell whether the lines for each pair of equations are parallel, perpendicular, or neither.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
Callisto
  • Callisto
For parallel lines, they have the same slope For perpendicular lines, the product of their slopes = -1 If they do not satisfy both condition, they are the 'neither' case :) So can you work out the slopes first?
anonymous
  • anonymous
no i'm really struggling with this whole thing :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lgbasallote
  • lgbasallote
first change to the slope-intercept form the first is already in the form...y = 3x/8 + 6 the second... 6y = -16x -16 y = -16/6 x - 16/6 y = -8/3 x - 8/3 so the slope of the first is 3/8 the slope of the second is -8/3 what do you think they are? parallel? perpendicular? or neither?
anonymous
  • anonymous
y = 3x/8 +6 16x +6y = -16 (rearranging into y=mx+b form) 6y = -16x -16 y= -16x/6 -16/6 y = -8x/3 -16 Now ALL we have to do is look at the slopes of each of these. If the slopes are the same, then they are parallel. If they one is the negative inverse of the other, then it's perpendicular. For example, if m=4/5, then the slope perpendicular to this would be: m=-5/4 If it's neither of these, then it's neither. y = 3x/8 +6 y = -8x/3 -16 Look at the slopes of these two. And remember, it always important to get your line eqn in the y=mx+b format.
anonymous
  • anonymous
Forgot to erase "they," sorry to sound like an idiot lol.
anonymous
  • anonymous
eqn 1: m = 3/8 eqn 2: m = -8/3 So: What do you think? Par, Perp, neither?
anonymous
  • anonymous
i'm thinking neither but not really sure. i know its not parallel
Callisto
  • Callisto
As long as you know they are not //, you can try multiplying them, what would you get for the product of the 2 slopes?
anonymous
  • anonymous
Well -8/3 is the negative inverse of 3/8. If a slope is the negative inverse of another slope, then that means they're perpendicular. If you have m=3, then the perpendicular slope would be -1/3. If you have m=-3/2, then the perpendicular slope would be 2/3. All I did with those two examples was flipped the number and added on a negative sign.
anonymous
  • anonymous
Is this clicking for you now?

Looking for something else?

Not the answer you are looking for? Search for more explanations.