Diyadiya
  • Diyadiya
Let f:R->R be a function defined by f(x) \[f(x)=- \frac{|x|^3+|x|}{1+x^2} \] then the graph lies in the A.1st & 2nd Quadrant B.1st & 3rd Quadrant C.2nd and 3rd Quadrant D.3rd & 4th Quadrant
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Zarkon
  • Zarkon
looks like f is always negative...
Zarkon
  • Zarkon
or zero
Diyadiya
  • Diyadiya
so 3rd and fourth?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
yes
anonymous
  • anonymous
since both numerator and denominator are positive, and there is a big fat minus sign out front
Diyadiya
  • Diyadiya
What about 2nd and 3rd?
Zarkon
  • Zarkon
the graph is never in the 2nd quadrant
Zarkon
  • Zarkon
the domain for this function is all reals...but the y values are zero or negative..thus just the 3rd and 4th quads
Zarkon
  • Zarkon
to make you notation nicer you can use \[f:\mathbb{R}\to\mathbb{R}\] f:\mathbb{R}\to\mathbb{R} :)
Diyadiya
  • Diyadiya
Ok Thank you :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.