anonymous
  • anonymous
Is the moment of inertia of a hula hoop just \(r^2m\), where \(m\) is the mass of each particle element and \(r\) is the radius of the hoop?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
This is the moment of inertia about an axis through the center of mass, perpendicular to the plane containing all elements of the hoop. You aren't expressing it as an integral, therefore m is the total mass of the hula hoop. Refer here: http://en.wikipedia.org/wiki/List_of_moments_of_inertia Fifth one down.
anonymous
  • anonymous
Dumb moment, ignore me. I apparently don't know what moment of inertia is.

Looking for something else?

Not the answer you are looking for? Search for more explanations.