anonymous
  • anonymous
Use the quadratic formula to find the roots of the equation. Round to tenths if necessary. x2 - 6x + 2 = 0 A. {0.4, 5.6} B. {0.5, 4.8} C. {1.4, 2.4} D. no real number solution
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
x^(2)-6x+2=0 Use the quadratic formula to find the solutions. In this case, the values are a=1, b=-6, and c=2. x=(-b+-sqrt(b^(2)-4ac))/(2a) where ax^(2)+bx+c=0 Substitute in the values of a=1, b=-6, and c=2. x=(-(-6)+-sqrt((-6)^(2)-4(1)(2)))/(2(1)) Multiply -1 by each term inside the parentheses. x=(6+-sqrt((-6)^(2)-4(1)(2)))/(2(1)) Simplify the section inside the radical. x=(6+-2sqrt(7))/(2(1)) Simplify the denominator of the quadratic formula. x=(6+-2sqrt(7))/(2) ------------------------------------------------------ Simplify the expression to solve for the + portion of the +-. x=3+sqrt(7) ------------------------------------------------------ Simplify the expression to solve for the - portion of the+-. x=3-sqrt(7) ------------------------------------------------------ The final answer is the combination of both solutions. x=3+sqrt(7),3-sqrt(7) x=5.6458,0.3542
anonymous
  • anonymous
so D. ?
.Sam.
  • .Sam.
A

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

.Sam.
  • .Sam.
@AlexisDelgado

Looking for something else?

Not the answer you are looking for? Search for more explanations.