anonymous
  • anonymous
I have a probability question that I need help with please. What is the probability that a number formed out of the ten numbers ranging 0-9 is an even number greater than 6 billion?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Directrix
  • Directrix
Can digits be repeated?
anonymous
  • anonymous
No
anonymous
  • anonymous
the number is a ten-digit number with each of those numbers in it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Directrix
  • Directrix
I'm going to suggest an answer and ask you to examine it and see if you agree. The number must be greater than 6 billion. Of the 10 digits, the only two digits that can begin the number are 6 and 8. There are 10 "slots" (digits) in the number. In the first slot, goes a 2 for the two ways to begin the number. -- TWO -- -- -- -- -- -- -- -- -- --
Directrix
  • Directrix
That leaves 9 digits. An even digit has to be in the tenth slot to make the entire number even. There were 5 even digits (0,2,4,6,8) but one of those (the 6 or 8) had to begin the number. Now, there are 4 choices for the last digit. -- TWO -- -- -- -- -- -- -- -- -- FOUR --
anonymous
  • anonymous
but also 7 and 9 can begin the number
Directrix
  • Directrix
At this point, there are 8 digits left for the remaining 8 slots of the number. For the second digit, there are 8 choices, for the third, there are 7 choices, and so on to the next to the last digit for which there will be 1 choice. Multiply those and the number of possibilities for an even 10-digit number with value greater than 6 billion should be determined. - TWO --EIGHT -- SEVEN -- SIX --FIVE -- FOUR -- THREE -- TWO -- ONE -- FOUR That multiplies to 322, 560 number of ways. Please check.
Directrix
  • Directrix
Okay. The number of choices for the first digit should be changed. What would you put there? And, what would be place as the last digit?
anonymous
  • anonymous
Would you have to do two different probabilities because 2 chances of odd then 5 chances of even at the end or 2 chances even then 4 chances even?
Directrix
  • Directrix
I suppose the number of favorable outcomes could be calculated that way. What did you get?
Directrix
  • Directrix
The site went down. I cranked out the problem using two cases and wondered if you had had time to do that?

Looking for something else?

Not the answer you are looking for? Search for more explanations.