anonymous
  • anonymous
is there any shortcuts for sigma notations ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
http://www.saskschools.ca/curr_content/mathb30/seq_series/les3/notes.htm
Directrix
  • Directrix
Σ sum of terms @sunshine0719 --> Do you mean shortcuts to get the sigma symbol?
anonymous
  • anonymous
noo\[\sum_{n=1}^{82} 2(n-1)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
likee for tht example the top number is a large number isn't there a shortcut instead of adding all of them up, all the way to 82
TuringTest
  • TuringTest
yes, there are formulas to be utilised here
TuringTest
  • TuringTest
first off you can simplify this\[\sum_{i=1}^{n}2(i-1)=-2n+2\sum_{i=1}^{n}i\]
TuringTest
  • TuringTest
second, you can use the formula\[\sum_{i=1}^{n}i={n(n+1)\over2}\]and just plug in whatever your particular \(n\) happens to be in your case \(n=82\)
TuringTest
  • TuringTest
of course, if sigma notation is all new to you you probably have no idea how I did that stuff up there... start with thinking about general forms... challenge: see if you can figure out what\[\sum_{i=1}^{n}1\]is

Looking for something else?

Not the answer you are looking for? Search for more explanations.