Diyadiya
  • Diyadiya
Let R be a reflexive relation on a finite set A having n-elements and there be m-ordered pairs in R. then A.\(m \geq n\) B.\(m \leq n\) C.m=n D.None of these
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
apoorvk
  • apoorvk
okay now see... a reflexive relation is one where each element of a set is related to itself too, nut not necessarily just itself. so if a set A ha elements (a,b,c,d), then the relation have will definitely constitute of (a,a) (b,b) (c,c) (d,d) atleast, but can contain others like any (a,k) or (b, l) as well. so you can guess that the relation 'R' will contain more or same no. of elements than the finite set 'A'. hence. m>=n so, A!!!!
anonymous
  • anonymous
m > n A = {1,2,3} Reflexive Relation {(1,1),(1,2),(2,2),(2,1),(1,3)(3,1),(3,3)}
anonymous
  • anonymous
Are these AIEEE questions?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Can't be JEE, IMPOSSSSSSIBRRRRUU
Diyadiya
  • Diyadiya
Got it Thanks for that :D NOOO NOT JEE!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.