• anonymous
Let Z* = Z – {0} and define Q to be the quotient set of Z x Z* by the following equivalence relation: (a1,b1) ~ (a2,b2) <-> a1b2 = b1a2. The elements of Q (i.e. the rational numbers) are equivalence classes [(a,b)]~. These are usually denoted by a/b and one calls (a,b) a representative of the rational number a/b. Moreover, a/b can always be written in lowest terms, that is a and b are coprime, or relatively prime. For instance (1,2) and (-3,-6) are distinct representatives of the same rational number ½. Check if the function f : Q X Q -> Q f (a1/b1, a2/b2) = (a1+a2)/(b1+b2), is well define
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!

Looking for something else?

Not the answer you are looking for? Search for more explanations.