anonymous
  • anonymous
prove that value of sqrt 100 - sqrt 99 lies vetween 1/18 and 1/20
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

King
  • King
we can say that sqrt99=3sqrt11=3*3.316=9.948 sqrt100=10 so 10-9.948=0.052 nw 1/18=0.55555... 1/20=0.5 so 0.052 lies between 0.55555... and 0.5 Thus,Proved!!!!!!
experimentX
  • experimentX
10 - sqrt(100-1) => 10 - 10(1 - 1/100)^1/2 now let's expand (1 - 1/100)^1/2 using binomial theorem
King
  • King
Hello guest please sign in or sign up...Thnk u!!:D

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

King
  • King
@experimentX u can use binomial theorem but then hw do we know if coolbird143 knows this or not?
experimentX
  • experimentX
(1-1/100)^1/2 = 1 -1/100x1/2-(1/100)^2x1/2 - ...
experimentX
  • experimentX
well the best way is to use calculator ... :D
King
  • King
or use ure brains...using calculator is bad....
experimentX
  • experimentX
10 - 10(1 - 1/100)^1/2 = 10 - 10 + 1/2*10/100 + 1/2*1/2*1/2*10/10000 + 1/2*1/2*3/2*1/6*10/1000000 => 1/2*10/100 + 1/2*1/2*1/2*10/10000 + 1/2*1/2*3/2*1/6*10/1000000 ... which is a converging series that lie between 1/18 and 1/20

Looking for something else?

Not the answer you are looking for? Search for more explanations.