anonymous
  • anonymous
The exact value of cos(-5pi/3) can be written in the form ((a sqr root b)/c) . Determine the values of a, b and c. I know that the angle is -300 therefore the reference angle is 60 in the first quadrant. Also, by looking at the special angles I know that b and c are 1/2, but will 'a' be positive or negative ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
cos(-5pi/3) = -cos(5pi/3) = -cos(2 pi - pi/3) = -cos(pi /3) =- cos 60 =- 1/2 a=-1 b=1 c=2
Savvy
  • Savvy
dude cos(-x)=cos(x) hence \[\cos(-5\pi/3)=\cos(5\pi/3)\] \[= \cos(2\pi - \pi/3)\] \[=\cos(\pi/3)\] =1/2 hence, a and \[\sqrt{b}\] could take any values such that their product is 1. c=2
anonymous
  • anonymous
Should be \[\cos (2\pi-5\pi/3)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Savvy
  • Savvy
where...????
Savvy
  • Savvy
no its in general...
anonymous
  • anonymous
Ok
anonymous
  • anonymous
sorry for that. I just though it in a wrong way

Looking for something else?

Not the answer you are looking for? Search for more explanations.